All activities in nature involve some interaction between energy and matter;
thus, it is hard to imagine an area that does not relate to thermodynamics in
some manner. Therefore, developing a good understanding of basic principles
of thermodynamics has long been an essential part of engineering education.
Thermodynamics is commonly encountered in many engineering systems
and other aspects of life, and one does not need to go very far to see some
application areas of it. In fact, one does not need to go anywhere. The heart
is constantly pumping blood to all parts of the human body, various energy
conversions occur in trillions of body cells, and the body heat generated is
constantly rejected to the environment. The human comfort is closely tied to
the rate of this metabolic heat rejection. We try to control this heat transfer
rate by adjusting our clothing to the environmental conditions.
Other applications of thermodynamics are right where one lives. An ordinary house is, in some respects, an exhibition hall filled with wonders of
thermodynamics (Fig. 1–4). Many ordinary household utensils and appliances are designed, in whole or in part, by using the principles of thermodynamics. Some examples include the electric or gas range, the heating and
air-conditioning systems, the refrigerator, the humidifier, the pressure
cooker, the water heater, the shower, the iron, and even the computer and
the TV. On a larger scale, thermodynamics plays a major part in the design
and analysis of automotive engines, rockets, jet engines, and conventional or
nuclear power plants, solar collectors, and the design of vehicles from ordinary cars to airplanes (Fig. 1–5). The energy-efficient home that you may be
living in, for example, is designed on the basis of minimizing heat loss in
winter and heat gain in summer. The size, location, and the power input of
the fan of your computer is also selected after an analysis that involves
thermodynamics.
No comments:
Post a Comment